它是如何工作的?
在最简单的形式中,二分查找对具有指定左索引和右索引的连续序列进行操作。这就是所谓的查找空间。二分查找维护查找空间的左、右和中间指示符,并比较查找目标或将查找条件应用于集合的中间值;如果条件不满足或值不相等,则清除目标不可能存在的那一半,并在剩下的一半上继续查找,直到成功为止。如果查以空的一半结束,则无法满足条件,并且无法找到目标。
LC二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
1 | 示例 1: |
Golang代码
1 | func search(nums []int, target int) int { |
二分查找模板分析
你在网上看到的 99% 的二分查找问题会归结于这 3 个模板中的一个。有些问题可以使用多个模板来实现,但是当你做更多的练习时,你会注意到一些模板比其他模板更适合某些问题。
这三个模板不同之处在于:
- 左、中、右索引的分配。
- 循环或递归终止条件。
- 后处理的必要性。
模板 #1 和 #3 是最常用的,几乎所有二分查找问题都可以用其中之一轻松实现。模板 #2 更 高级一些,用于解决某些类型的问题。
模板 #1 (left <= right)
- 二分查找的最基础和最基本的形式。
- 查找条件可以在不与元素的两侧进行比较的情况下确定(或使用它周围的特定元素)。
- 不需要后处理,因为每一步中,你都在检查是否找到了元素。如果到达末尾,则知道未找到该元素。
模板 #2 (left < right)
- 一种实现二分查找的高级方法。
- 查找条件需要访问元素的直接右邻居。
- 使用元素的右邻居来确定是否满足条件,并决定是向左还是向右。
- 保证查找空间在每一步中至少有 2 个元素。
- 需要进行后处理。 当你剩下 1 个元素时,循环 / 递归结束。 需要评估剩余元素是否符合条件。
模板 #3 (left + 1 < right)
- 实现二分查找的另一种方法。
- 搜索条件需要访问元素的直接左右邻居。
- 使用元素的邻居来确定它是向右还是向左。
- 保证查找空间在每个步骤中至少有 3 个元素。
- 需要进行后处理。 当剩下 2 个元素时,循环 / 递归结束。 需要评估其余元素是否符合条件。
时间和空间复杂度:
时间:O(log n) —— 算法时间
因为二分查找是通过对查找空间中间的值应用一个条件来操作的,并因此将查找空间折半,在更糟糕的情况下,我们将不得不进行 O(log n) 次比较,其中 n 是集合中元素的数目。
1 | 为什么是 log n? |
空间:O(1) —— 常量空间
虽然二分查找确实需要跟踪 3 个指标,但迭代解决方案通常不需要任何其他额外空间,并且可以直接应用于集合本身,因此需要 O(1) 或常量空间。
注:以上内容来自LeetCode-cn中的LeetBook内容。
希望通过今天的学习可以入门了解二分查找。