不会飞的章鱼

熟能生巧,勤能补拙;念念不忘,必有回响。

Go进阶-微服务可用性设计

隔离

隔离,本质上是对系统或资源进行分割,从而实现当系统发生故障时能限定传播范围和影响范围,即发生故障后只有出问题的服务不可用,保证其他服务仍然可用。

服务隔离:动静分离、读写分离
轻重隔离:核心、快慢、热点
物理隔离:线程、进程、集群、机房

服务隔离

动静隔离:

小到 CPU 的 cacheline false sharing、数据库 mysql 表设计中避免 bufferpool 频繁过期,隔离动静表,大到架构设计中的图片、静态资源等缓存加速。本质上都体现的一样的思路,即加速/缓存访问变换频次小的。比如 CDN 场景中,将静态资源和动态 API 分离,也是体现了隔离的思路:

  • 降低应用服务器负载,静态文件访问负载全部通过CDN。
  • 对象存储存储费用最低。
  • 海量存储空间,无需考虑存储架构升级。
  • 静态CDN带宽加速,延迟低。

读写分离:主从、Replicaset、CQRS。

轻重隔离

核心隔离

业务按照 Level 进行资源池划分(L0/L1/L2)。

  • 核心/非核心的故障域的差异隔离(机器资源、依赖资源)。
  • 多集群,通过冗余资源来提升吞吐和容灾能力。

快慢隔离

我们可以把服务的吞吐想象为一个池,当突然洪流进来时,池子需要一定时间才能排放完,这时候其他支流在池子里待的时间取决于前面的排放能力,耗时就会增高,对小请求产生影响。

日志传输体系的架构设计中,整个流都会投放到一个 kafka topic 中(早期设计目的: 更好的顺序IO),流内会区分不同的 logid,logid 会有不同的 sink 端,它们之前会出现差速,比如 HDFS 抖动吞吐下降,ES 正常水位,全局数据就会整体反压。

  • 按照各种纬度隔离:sink、部门、业务、logid、重要性(S/A/B/C)。

业务日志也属于某个 logid,日志等级就可以作为隔离通道。

热点隔离

何为热点?热点即经常访问的数据。很多时候我们希望统计某个热点数据中访问频次最高的 Top K 数据,并对其访问进行缓存。比如:

  • 小表广播: 从 remotecache 提升为 localcache,app 定时更新,甚至可以让运营平台支持广播刷新 localcache。
  • 主动预热: 比如直播房间页高在线情况下bypass 监控主动防御。

物理隔离

线程隔离

主要通过线程池进行隔离,也是实现服务隔离的基础。把业务进行分类并交给不同的线程池进行处理,当某个线程池处理一种业务请求发生问题时,不会讲故障扩散和影响到其他线程池,保证服务可用。

对于 Go 来说,所有 IO 都是 Nonblocking,且托管给了 Runtime,只会阻塞Goroutine,不阻塞 M,我们只需要考虑 Goroutine 总量的控制,不需要线程模型语言的线程隔离。

进程隔离

容器化(docker),容器编排引擎(k8s)。

集群隔离

逻辑上是一个应用,物理上部署多套应用,通过 cluster 区分。

Case Stduy

  • 早期转码集群被超大视频攻击,导致转码大量延迟。
  • 入口Nginx(SLB)故障,影响全机房流量入口故障。
  • 缩略图服务,被大图实时缩略吃完所有 CPU,导致正常的小图缩略被丢弃,大量503。
  • 数据库实例 cgroup 未隔离,导致大 SQL 引起的集体故障。
  • INFO 日志量过大,导致异常 ERROR 日志采集延迟。

超时控制

超时控制,我们的组件能够快速失效(fail fast),因为我们不希望等到断开的实例直到超时。没有什么比挂起的请求和无响应的界面更令人失望。这不仅浪费资源,而且还会让用户体验变得更差。我们的服务是互相调用的,所以在这些延迟叠加前,应该特别注意防止那些超时的操作。

  • 网路传递具有不确定性。
  • 客户端和服务端不一致的超时策略导致资源浪费。
  • “默认值”策略。
  • 高延迟服务导致 client 浪费资源等待,使用超时传递: 进程间传递 + 跨进程传递。

Case Stduy

  • SLB 入口 Nginx 没配置超时导致连锁故障。
  • 服务依赖的 DB 连接池漏配超时,导致请求阻塞,最终服务集体 OOM。
  • 下游服务发版耗时增加,而上游服务配置超时过短,导致上游请求失败。

过载保护

令牌桶算法

是一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌。令牌桶算法的描述如下:

  • 假设限制2r/s,则按照500毫秒的固定速率往桶中添加令牌。
  • 桶中最多存放 b 个令牌,当桶满时,新添加的令牌被丢弃或拒绝。
  • 当一个 n 个字节大小的数据包到达,将从桶中删除n 个令牌,接着数据包被发送到网络上。
  • 如果桶中的令牌不足 n 个,则不会删除令牌,且该数据包将被限流(要么丢弃,要么缓冲区等待)。

漏桶算法

作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolicing),漏桶算法的描述如下:

  • 一个固定容量的漏桶,按照常量固定速率流出水滴。
  • 如果桶是空的,则不需流出水滴。
  • 可以以任意速率流入水滴到漏桶。
  • 如果流入水滴超出了桶的容量,则流入的水滴溢出了(被丢弃),而漏桶容量是不变的。

如何计算接近峰值时的系统吞吐?

  • CPU: 使用一个独立的线程采样,每隔 250ms 触发一次。在计算均值时,使用了简单滑动平均去除峰值的影响。
  • Inflight: 当前服务中正在进行的请求的数量。
  • Pass&RT: 最近5s,pass 为每100ms采样窗口内成功请求的数量,rt 为单个采样窗口中平均响应时间。

限流

限流是指在一段时间内,定义某个客户或应用可以接收或处理多少个请求的技术。例如,通过限流,你可以过滤掉产生流量峰值的客户和微服务,或者可以确保你的应用程序在自动扩展(Auto Scaling)失效前都不会出现过载的情况。

  • 令牌桶、漏桶 针对单个节点,无法分布式限流。
  • QPS 限流
  • 不同的请求可能需要数量迥异的资源来处理。
  • 某种静态 QPS 限流不是特别准。

给每个用户设置限制

  • 全局过载发生时候,针对某些“异常”进行控制。
  • 一定程度的“超卖”配额。
  • 按照优先级丢弃。
  • 拒绝请求也需要成本。

分布式限流

分布式限流,是为了控制某个应用全局的流量,而非真对单个节点纬度。

  • 单个大流量的接口,使用 redis 容易产生热点。
  • pre-request 模式对性能有一定影响,高频的网络往返。

Q:如何来分配资源?
A:“最大最小公平分享”(Max-Min Fairness)。

最大最小公平分配算法的形式化定义如下:

  • 资源按照需求递增的顺序进行分配。
  • 不存在用户得到的资源超过自己的需求。
  • 未得到满足的用户等价的分享资源。

特点

重要性

每个接口配置阈值,运营工作繁重,最简单的我们配置服务级别 quota,更细粒度的,我们可以根据不同重要性设定 quota,我们引入了重要性(criticality):

  • 最重要 CRITICAL_PLUS,为最终的要求预留的类型,拒绝这些请求会造成非常严重的用户可见的问题。
  • 重要 CRITICAL,生产任务发出的默认请求类型。拒绝这些请求也会造成用户可见的问题。但是可能没那么严重。
  • 可丢弃的 SHEDDABLE_PLUS 这些流量可以容忍某种程度的不可用性。这是批量任务发出的请求的默认值。这些请求通常可以过几分钟、几小时后重试。
  • 可丢弃的 SHEDDABLE 这些流量可能会经常遇到部分不可用情况,偶尔会完全不可用。

gRPC 系统之间,需要自动传递重要性信息。如果后端接受到请求 A,在处理过程中发出了请求 B 和 C 给其他后端,请求 B 和 C 会使用与 A 相同的重要性属性。

  • 全局配额不足时,优先拒绝低优先级的。
  • 全局配额,可以按照重要性分别设置。
  • 过载保护时,低优先级的请求先被拒绝。

熔断

断路器(Circuit Breakers): 为了限制操作的持续时间,我们可以使用超时,超时可以防止挂起操作并保证系统可以响应。因为我们处于高度动态的环境中,几乎不可能确定在每种情况下都能正常工作的准确的时间限制。断路器以现实世界的电子元件命名,因为它们的行为是都是相同的。断路器在分布式系统中非常有用,因为重复的故障可能会导致雪球效应,并使整个系统崩溃。

  • 服务依赖的资源出现大量错误。
  • 某个用户超过资源配额时,后端任务会快速拒绝请求,返回“配额不足”的错误,但是拒绝回复仍然会消耗一定资源。有可能后端忙着不停发送拒绝请求,导致过载。

Gutter

基于熔断的 gutter kafka ,用于接管自动修复系统运行过程中的负载,这样只需要付出10%的资源就能解决部分系统可用性问题。

我们经常使用 failover 的思路,但是完整的 failover 需要翻倍的机器资源,平常不接受流量时,资源浪费。高负载情况下接管流量又不一定完整能接住。所以这里核心利用熔断的思路,是把抛弃的流量转移到 gutter 集群,如果 gutter 也接受不住的流量,重新回抛到主集群,最大力度来接受。

客户端流控

positive feedback: 用户总是积极重试,访问一个不可达的服务。

  • 客户端需要限制请求频次,retry backoff 做一定的请求退让。
  • 可以通过接口级别的error_details,挂载到每个 API 返回的响应里。

Case Study

  • 二层缓存穿透、大量回源导致的核心服务故障。

  • 异常客户端引起的服务故障(query of death)
    (1)请求放大。
    (2)资源数放大。

  • 用户重试导致的大面积故障。

降级

通过降级回复来减少工作量,或者丢弃不重要的请求。而且需要了解哪些流量可以降级,并且有能力区分不同的请求。我们通常提供降低回复的质量来答复减少所需的计算量或者时间。我们自动降级通常需要考虑几个点:

  • 确定具体采用哪个指标作为流量评估和优雅降级的决定性指标(如,CPU、延迟、队列长度、线程数量、错误等)。
  • 当服务进入降级模式时,需要执行什么动作?
  • 流量抛弃或者优雅降级应该在服务的哪一层实现?是否需要在整个服务的每一层都实现,还是可以选择某个高层面的关键节点来实现?

同时我们要考虑一下几点:

  • 优雅降级不应该被经常触发 - 通常触发条件现实了容量规划的失误,或者是意外的负载。
  • 演练,代码平时不会触发和使用,需要定期针对一小部分的流量进行演练,保证模式的正常。
  • 应该足够简单。

降级本质为: 提供有损服务。

  • UI 模块化,非核心模块降级。
    BFF 层聚合 API,模块降级。

  • 页面上一次缓存副本。

  • 默认值、热门推荐等。

  • 流量拦截 + 定期数据缓存(过期副本策略)。

  • 处理策略
    页面降级、延迟服务、写/读降级、缓存降级
    抛异常、返回约定协议、Mock 数据、Fallback 处理

Case Study

  • 客户端解析协议失败,app 奔溃。
  • 客户端部分协议不兼容,导致页面失败。
  • local cache 数据源缓存,发版失效 + 依赖接口故障,引起的白屏。
  • 没有 playbook,导致的 MTTR 上升。

重试

当请求返回错误(例: 配额不足、超时、内部错误等),对于 backend 部分节点过载的情况下,倾向于立刻重试,但是需要留意重试带来的流量放大:

  • 限制重试次数和基于重试分布的策略(重试比率: 10%)。
  • 随机化、指数型递增的重试周期: exponential ackoff + jitter。
  • client 测记录重试次数直方图,传递到 server,进行分布判定,交由 server 判定拒绝。
  • 只应该在失败的这层进行重试,当重试仍然失败,全局约定错误码“过载,无须重试”,避免级联重试。

Case Study

  • Nginx upstream retry 过大,导致服务雪崩。

  • 业务不幂等,导致的重试,数据重复。
    (1)全局唯一 ID: 根据业务生成一个全局唯一 ID,在调用接口时会传入该 ID,接口提供方会从相应的存储系统比如 redis 中去检索这个全局 ID 是否存在,如果存在则说明该操作已经执行过了,将拒绝本次服务请求;否则将相应该服务请求并将全局 ID 存入存储系统中,之后包含相同业务 ID 参数的请求将被拒绝。
    (2)去重表: 这种方法适用于在业务中有唯一标识的插入场景。比如在支付场景中,一个订单只会支付一次,可以建立一张去重表,将订单 ID 作为唯一索引。把支付并且写入支付单据到去重表放入一个事务中了,这样当出现重复支付时,数据库就会抛出唯一约束异常,操作就会回滚。这样保证了订单只会被支付一次。
    (3)多版本并发控制: 适合对更新请求作幂等性控制,比如要更新商品的名字,这是就可以在更新的接口中增加一个版本号来做幂等性控制。

  • 多层级重试传递,放大流量引起雪崩。

负载均衡

数据中心内部的负载均衡

在理想情况下,某个服务的负载会完全均匀地分发给所有的后端任务。在任何时刻,最忙和最不忙的节点永远消耗同样数量的CPU。

目标:

  • 均衡的流量分发。
  • 可靠的识别异常节点。
  • scale-out,增加同质节点扩容。
  • 减少错误,提高可用性。

最佳实践

  • 变更管理:
    70%的问题是由变更引起的,恢复可用代码并不总是坏事。
  • 避免过载:
    过载保护、流量调度等。
  • 依赖管理:
    任何依赖都可能故障,做 chaos monkey testing,注入故障测试。
  • 优雅降级:
    有损服务,避免核心链路依赖故障。
  • 重试退避:
    退让算法,冻结时间,API retry detail 控制策略。
  • 超时控制:
    进程内 + 服务间 超时控制。
  • 极限压测 + 故障演练。
  • 扩容 + 重启 + 消除有害流量。

References

http://www.360doc.com/content/16/1124/21/31263000_609259745.shtml
http://www.infoq.com/cn/articles/basis-frameworkto-implement-micro-service/
http://www.infoq.com/cn/news/2017/04/linkerd-celebrates-one-year
https://medium.com/netflix-techblog/netflix-edge-load-balancing-695308b5548c
https://mp.weixin.qq.com/s?__biz=MzAwNjQwNzU2NQ==&mid=402841629&idx=1&sn=f598fec9b370b8a6f2062233b31122e0&mpshare=1&scene=23&srcid=0404qP0fH8zRiIiFzQBiuzuU#rd
https://mp.weixin.qq.com/s?__biz=MzIzMzk2NDQyMw==&mid=2247486641&idx=1&sn=1660fb41b0c5b8d8d6eacdfc1b26b6a6&source=41#wechat_redirect
https://blog.acolyer.org/2018/11/16/overload-control-for-scaling-wechat-microservices/
https://www.cs.columbia.edu/~ruigu/papers/socc18-final100.pdf
https://github.com/alibaba/Sentinel/wiki/系统负载保护
https://blog.csdn.net/okiwilldoit/article/details/81738782
http://alex-ii.github.io/notes/2019/02/13/predictive_load_balancing.html
https://blog.csdn.net/m0_38106113/article/details/81542863

------ 本文结束------
如果本篇文章对你有帮助,可以给作者加个鸡腿~(*^__^*),感谢鼓励与支持!