不会飞的章鱼

熟能生巧,勤能补拙;念念不忘,必有回响。

设计原则四:接口隔离

如何理解“接口隔离原则”?

接口隔离原则的英文翻译是“ Interface Segregation Principle”,缩写为 ISP。
Robert Martin 在 SOLID 原则中是这样定义它的:“Clients should not be forced to depend upon interfaces that they do not use。”直译成中文的话就是:客户端不应该强迫依赖它不需要的接口。其中的“客户端”,可以理解为接口的调用者或者使用者。

理解接口隔离原则的关键,就是理解其中的“接口”二字。在这条原则中,我们可以把“接口”理解为下面三种东西:

  • 一组 API 接口集合
  • 单个 API 接口或函数
  • OOP 中的接口概念

把“接口”理解为一组 API 接口集合

例如,微服务用户系统提供了一组跟用户相关的 API 给其他系统使用,比如:注册、登录、获取用户信息等。具体代码如下所示:

1
2
3
4
5
6
7
8
9
10
public interface UserService {
boolean register(String cellphone, String password);
boolean login(String cellphone, String password);
UserInfo getUserInfoById(long id);
UserInfo getUserInfoByCellphone(String cellphone);
}

public class UserServiceImpl implements UserService {
//...
}

现在,我们的后台管理系统要实现删除用户的功能,希望用户系统提供一个删除用户的接口。这个时候我们该如何来做呢?

  • 常规做法:只需要在 UserService中新添加一个 deleteUserByCellphone() 或 deleteUserById() 接口就可以了。

这个方法可以解决问题,但是也隐藏了一些安全隐患。
删除用户是一个非常慎重的操作,我们只希望通过后台管理系统来执行,所以这个接口只限于给后台管理系统使用。如果我们把它放到 UserService 中,那所有使用到 UserService的系统,都可以调用这个接口。不加限制地被其他业务系统调用,就有可能导致误删用户。

最好的解决方案是从架构设计的层面,通过接口鉴权的方式来限制接口的调用。

如果暂时没有鉴权框架来支持,我们还可以从代码设计的层面,尽量避免接口被误用。

参照接口隔离原则,调用者不应该强迫依赖它不需要的接口,将删除接口单独放到另外一个接口 RestrictedUserService 中,然后将 RestrictedUserService 只打包提供给后台管理系统来使用。具体代码实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public interface UserService {
boolean register(String cellphone, String password);
boolean login(String cellphone, String password);
UserInfo getUserInfoById(long id);
UserInfo getUserInfoByCellphone(String cellphone);
}

public interface RestrictedUserService {
boolean deleteUserByCellphone(String cellphone);
boolean deleteUserById(long id);
}

public class UserServiceImpl implements UserService, RestrictedUserService {
// ... 省略实现代码...
}

我们把接口隔离原则中的接口,理解为一组接口集合,它可以是某个微服务的接口,也可以是某个类库的接口等等。在设计微服务或者类库接口的时候,如果部分接口只被部分调用者使用,那我们就需要将这部分接口隔离出来,单独给对应的调用者使用,而不是强迫其他调用者也依赖这部分不会被用到的接口。

把“接口”理解为单个 API 接口或函数

函数的设计要功能单一,不要将多个不同的功能逻辑在一个函数中实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Statistics {
private Long max;
private Long min;
private Long average;
private Long sum;
private Long percentile99;
private Long percentile999;
//... 省略 constructor/getter/setter 等方法...
}

public Statistics count(Collection<Long> dataSet) {
tatistics statistics = new Statistics();
//... 省略计算逻辑...
return statistics;
}

在上面的代码中,count() 函数的功能不够单一,包含很多不同的统计功能,比如,求最大值、最小值、平均值等等。
按照接口隔离原则,我们应该把 count() 函数拆成几个更小粒度的函数,每个函数负责一个独立的统计功能。拆分之后的代码如下所示:

1
2
3
4
public Long max(Collection<Long> dataSet) { //... }
public Long min(Collection<Long> dataSet) { //... }
public Long average(Colletion<Long> dataSet) { //... }
// ... 省略其他统计函数...

小结

接口隔离原则跟单一职责原则有点类似,不过稍微还是有点区别:

  • 单一职责原则针对的是模块、类、接口的设计。
  • 而接口隔离原则相对于单一职责原则,一方面它更侧重于接口的设计,另一方面它的思考的角度不同。它提供了一种判断接口是否职责单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。

把“接口”理解为 OOP 中的接口概念

假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个 Configuration 类:RedisConfig、MysqlConfig、KafkaConfig,具体的代码实现如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class RedisConfig {
private ConfigSource configSource; // 配置中心(比如 zookeeper)
private String address;
private int timeout;
private int maxTotal;
// 省略其他配置: maxWaitMillis,maxIdle,minIdle...

public RedisConfig(ConfigSource configSource) {
this.configSource = configSource;
}

public String getAddress() {
return this.address;
}

public void update() {
// 从 configSource 加载配置到 address/timeout/maxTotal...
}
}

public class KafkaConfig { //... 省略... }
public class MysqlConfig { //... 省略... }

现在,我们有一个新的功能需求,希望支持 Redis 和 Kafka 配置信息的热更新。所谓“热更新(hot update)”就是,如果在配置中心中更改了配置信息,我们希望在不用重启系统的情况下,能将最新的配置信息加载到内存中(也就是 RedisConfig、KafkaConfig 类中)。但是,因为某些原因,我们并不希望对 MySQL 的配置信息进行热更新。

为了实现这样一个功能需求,我们设计实现了一个 ScheduledUpdater 类,以固定时间频率(periodInSeconds)来调用 RedisConfig、KafkaConfig 的 update() 方法更新配置信息。具体的代码实现如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public interface Updater {
void update();
}

public class RedisConfig implemets Updater {
//... 省略其他属性和方法...
public void update() { //... }
}

public class KafkaConfig implemets Updater {
//... 省略其他属性和方法...
public void update() { //... }
}

public class MysqlConfig { //... 省略其他属性和方法... }

public class ScheduledUpdater {
private final ScheduledExecutorService executor = Executors.newSingleThread
private long initialDelayInSeconds;
private long periodInSeconds;
private Updater updater;

public ScheduleUpdater(Updater updater, long initialDelayInSeconds, long periodInSeconds) {
this.updater = updater;
this.initialDelayInSeconds = initialDelayInSeconds;
this.periodInSeconds = periodInSeconds;
}

public void run() {
executor.scheduleAtFixedRate(new Runnable() {
public void run() {
updater.update();
}
}, this.initialDelayInSeconds, this.periodInSeconds, TimeUnit.SECONDS)
}
}

public class Application {
ConfigSource configSource = new ZookeeperConfigSource(/* 省略参数 */);
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mysqlConfig = new MysqlConfig(configSource);

public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300)
redisConfigUpdater.run();

ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60)
redisConfigUpdater.run();
}
}

刚刚的热更新的需求我们已经搞定了。

现在,我们又有了一个新的监控功能需求。通过命令行来查看 Zookeeper 中的配置信息是比较麻烦的。
所以,我们希望能有一种更加方便的配置信息查看方式。

我们可以在项目中开发一个内嵌的 SimpleHttpServer,输出项目的配置信息到一个固定的HTTP 地址,比如:http://127.0.0.1:2389/config
我们只需要在浏览器中输入这个地址,就可以显示出系统的配置信息。不过,出于某些原因,我们只想暴露 MySQL 和 Redis的配置信息,不想暴露 Kafka 的配置信息。

为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
public interface Updater {
void update();
}

public interface Viewer {
String outputInPlainText();
Map<String, String> output();
}

public class RedisConfig implemets Updater, Viewer {
//... 省略其他属性和方法...
public void update() { //... }
public String outputInPlainText() { //... }
public Map<String, String> output() { //...}
}

public class KafkaConfig implements Updater {
//... 省略其他属性和方法...
public void update() { //... }
}

public class MysqlConfig implements Viewer {
//... 省略其他属性和方法...
public String outputInPlainText() { //... }
public Map<String, String> output() { //...}
}

public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Viewer>> viewers = new HashMap<>();

public SimpleHttpServer(String host, int port) {//...}

public void addViewers(String urlDirectory, Viewer viewer) {
if (!viewers.containsKey(urlDirectory)) {
viewers.put(urlDirectory, new ArrayList<Viewer>());
}
this.viewers.get(urlDirectory).add(viewer);
}

public void run() { //... }
}

public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource)
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource)
public static final MySqlConfig mysqlConfig = new MySqlConfig(configSource)

public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300, 300);
redisConfigUpdater.run();
ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60, 60);
redisConfigUpdater.run();

SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2)
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mysqlConfig);
simpleHttpServer.run();
}
}

至此,热更新和监控的需求我们就都实现了。

回顾这个例子的设计思想

我们设计了两个功能非常单一的接口:Updater 和 Viewer。ScheduledUpdater 只依赖Updater 这个跟热更新相关的接口,不需要被强迫去依赖不需要的 Viewer 接口,满足接口隔离原则。同理,SimpleHttpServer 只依赖跟查看信息相关的 Viewer 接口,不依赖不需要的 Updater 接口,也满足接口隔离原则。

------ 本文结束------
如果本篇文章对你有帮助,可以给作者加个鸡腿~(*^__^*),感谢鼓励与支持!