传统弹性伸缩的困境
从传统意义上,弹性伸缩主要解决的问题是容量规划与实践负载的矛盾。
蓝色水位线表示集群资源容量随着负载的增加不断扩容,红色曲线表示集群资源实际负载变化。
弹性伸缩就是要解决当实际负载增大,而集群资源容量没来得及反应的问题。
Kubernetes中弹性伸缩存在的问题
常规的做法是给集群资源预留保障集群可用,通常20%左右。这种方式看似没什么问题,但放到Kubernetes中,就会发现如下2个问题。
机器规格不统一造成机器利用率百分比碎片化
在一个Kubernetes集群中,通常不只包含一种规格的机器,假设集群中存在4C8G与16C32G两种规格的机器,对于10%的资源预留,这两种规格代表的意义是完全不同的。
特别是在缩容的场景下,为了保证缩容后集群稳定性,我们一般会一个节点一个节点从集群中摘除,那么如何判断节点是否可以摘除其利用率百分比就是重要的指标。此时如果大规则机器有较低的利用率被判断缩容,那么很有可能会造成节点缩容后,容器重新调度后的争抢。如果优先缩容小规则机器,则可能造成缩容后资源的大量冗余。
机器利用率不单纯依靠宿主机计算
在大部分生产环境中,资源利用率都不会保持一个高的水位,但从调度来讲,调度应该保持一个比较高的水位,这样才能保障集群稳定性,又不过多浪费资源。
弹性伸缩概念的延伸
不是所有的业务都存在峰值流量,越来越细分的业务形态带来更多成本节省和可用性之间的跳转。
- 在线负载型:微服务、网站、API
- 离线任务型:离线计算、机器学习
- 定时任务型:定时批量计算
不同类型的负载对于弹性伸缩的要求有所不同,在线负载对弹出时间敏感,离线任务对价格敏感,定时任务对调度敏感。
Kubernetes 弹性伸缩布局
在 Kubernetes 的生态中,在多个维度、多个层次提供了不同的组件来满足不同的伸缩场景。
有三种弹性伸缩:
- CA(Cluster Autoscaler):Node级别自动扩/缩容cluster-autoscaler组件
- HPA(Horizontal Pod Autoscaler):Pod个数自动扩/缩容
- VPA(Vertical Pod Autoscaler):Pod配置自动扩/缩容,主要是CPU、内存addon-resizer组件
如果在云上建议 HPA 结合cluster-autoscaler
的方式进行集群的弹性伸缩管理。
Node 自动扩容/缩容
Cluster AutoScaler
扩容:Cluster AutoScaler 定期检测是否有充足的资源来调度新创建的 Pod,当资源不足时会调用 Cloud Provider 创建新的 Node。
缩容:Cluster AutoScaler 也会定期监测 Node 的资源使用情况,当一个 Node 长时间资源利用率都很低时(低于 50%)自动将其所在虚拟机从云服务商中删除。此时,原来的 Pod 会自动调度到其他 Node 上面。
支持的云提供商:
- 阿里云:https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/alicloud/README.md
- AWS: https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
- Azure: https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/azure/README.md
Ansible扩容Node
- 触发新增Node
- 调用Ansible脚本部署组件
- 检查服务是否可用
- 调用API将新Node加入集群或者启用Node自动加入
- 观察新Node状态
- 完成Node扩容,接收新Pod
Pod自动扩容/缩容(HPA)
Horizontal Pod Autoscaler(HPA,Pod水平自动伸缩),根据资源利用率或者自定义指标自动调整replication controller, deployment 或 replica set,实现部署的自动扩展和缩减,让部署的规模接近于实际服务的负载。HPA不适于无法缩放的对象,例如DaemonSet。
HPA基本原理
Kubernetes 中的 Metrics Server 持续采集所有 Pod 副本的指标数据。HPA 控制器通过 Metrics Server 的 API(Heapster 的 API 或聚合 API)获取这些数据,基于用户定义的扩缩容规则进行计算,得到目标 Pod 副本数量。当目标 Pod 副本数量与当前副本数量不同时,HPA 控制器就向 Pod 的副本控制器(Deployment、RC 或 ReplicaSet)发起 scale 操作,调整 Pod 的副本数量,完成扩缩容操作。如图所示:
在弹性伸缩中,冷却周期是不能逃避的一个话题, 由于评估的度量标准是动态特性,副本的数量可能会不断波动。有时被称为颠簸, 所以在每次做出扩容缩容后,冷却时间是多少。
在 HPA 中,默认的扩容冷却周期是 3 分钟,缩容冷却周期是 5 分钟。
可以通过调整kube-controller-manager组件启动参数设置冷却时间:
- –horizontal-pod-autoscaler-downscale-delay :扩容冷却
- –horizontal-pod-autoscaler-upscale-delay :缩容冷却
HPA的演进历程
目前 HPA 已经支持了 autoscaling/v1、autoscaling/v1beta1和autoscaling/v1beta2 三个大版本 。
目前大多数人比较熟悉是autoscaling/v1,这个版本只支持CPU一个指标的弹性伸缩。
而autoscaling/v1beta1增加了支持自定义指标,autoscaling/v1beta2又额外增加了外部指标支持。
而产生这些变化不得不提的是Kubernetes社区对监控与监控指标的认识认识与转变。从早期Heapster到Metrics Server再到将指标边界进行划分,一直在丰富监控生态。
示例:
1 | apiVersion: autoscaling/v1 |
1 | apiVersion: autoscaling/v2beta1 |
1 | apiVersion: autoscaling/v2beta2 |
基于CPU指标缩放
Kubernetes API Aggregation
在 Kubernetes 1.7 版本引入了聚合层,允许第三方应用程序通过将自己注册到kube-apiserver上,仍然通过 API Server 的 HTTP URL 对新的 API 进行访问和操作。为了实现这个机制,Kubernetes 在 kube-apiserver 服务中引入了一个 API 聚合层(API Aggregation Layer),用于将扩展 API 的访问请求转发到用户服务的功能。
当你访问 apis/metrics.k8s.io/v1beta1 的时候,实际上访问到的是一个叫作 kube-aggregator 的代理。而 kube-apiserver,正是这个代理的一个后端;而 Metrics Server,则是另一个后端 。通过这种方式,我们就可以很方便地扩展 Kubernetes 的 API 了。
如果你使用kubeadm部署的,默认已开启。如果你使用二进制方式部署的话,需要在kube-APIServer中添加启动参数,增加以下配置:
1 | # vi /opt/kubernetes/cfg/kube-apiserver.conf |
在设置完成重启 kube-apiserver 服务,就启用 API 聚合功能了。
部署 Metrics Server
Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。
Metric server从每个节点上Kubelet公开的摘要API收集指标。
Metrics server通过Kubernetes聚合器注册在Master APIServer中。
1 | # git clone https://github.com/kubernetes-incubator/metrics-server |
可通过Metrics API在Kubernetes中获得资源使用率指标,例如容器CPU和内存使用率。这些度量标准既可以由用户直接访问(例如,通过使用kubectl top
命令),也可以由集群中的控制器(例如,Horizontal Pod Autoscaler)用于进行决策。
测试:
1 | kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes |
autoscaling/v1(CPU指标实践)
autoscaling/v1版本只支持CPU一个指标。
首先部署一个应用:
1 | apiVersion: apps/v1 |
创建HPA策略:
1 | apiVersion: autoscaling/v1 |
scaleTargetRef:表示当前要伸缩对象是谁
targetCPUUtilizationPercentage:当整体的资源利用率超过50%的时候,会进行扩容。
开启压测:
1 | yum install httpd-tools |
10.0.0.147 为ClusterIP。
检查扩容状态:
1 | kubectl get hpa |
关闭压测,过一会检查缩容状态。
autoscaling/v2beta2(多指标)
为满足更多的需求, HPA 还有 autoscaling/v2beta1和 autoscaling/v2beta2两个版本。
这两个版本的区别是 autoscaling/v1beta1支持了 Resource Metrics(CPU)和 Custom Metrics(应用程序指标),而在 autoscaling/v2beta2的版本中额外增加了 External Metrics的支持。
1 | kubectl get hpa.v2beta2.autoscaling -o yaml > /tmp/hpa-v2.yaml |
1 | apiVersion: autoscaling/v2beta2 |
与上面v1版本效果一样,只不过这里格式有所变化。
v2还支持其他另种类型的度量指标,:Pods和Object。
1 | type: Pods |
1 | type: Object |
metrics中的type字段有四种类型的值:Object、Pods、Resource、External。
- Resource:指的是当前伸缩对象下的pod的cpu和memory指标,只支持Utilization和AverageValue类型的目标值。
- Object:指的是指定k8s内部对象的指标,数据需要第三方adapter提供,只支持Value和AverageValue类型的目标值。
- Pods:指的是伸缩对象Pods的指标,数据需要第三方的adapter提供,只允许AverageValue类型的目标值。
- External:指的是k8s外部的指标,数据同样需要第三方的adapter提供,只支持Value和AverageValue类型的目标值。
1 | # hpa-v2.yaml |
基于Prometheus自定义指标缩放
资源指标只包含CPU、内存,一般来说也够了。但如果想根据自定义指标:如请求qps/5xx错误数来实现HPA,就需要使用自定义指标了,目前比较成熟的实现是 Prometheus Custom Metrics。自定义指标由Prometheus来提供,再利用k8s-prometheus-adpater聚合到apiserver,实现和核心指标(metric-server)同样的效果。
部署Prometheus
Prometheus(普罗米修斯)是一个最初在SoundCloud上构建的监控系统。自2012年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护,Prometheus于2016年加入云原生云计算基金会(CNCF),成为继Kubernetes之后的第二个托管项目。
Prometheus 特点:
- 多维数据模型:由度量名称和键值对标识的时间序列数据
- PromSQL:一种灵活的查询语言,可以利用多维数据完成复杂的查询
- 不依赖分布式存储,单个服务器节点可直接工作
- 基于HTTP的pull方式采集时间序列数据
- 推送时间序列数据通过PushGateway组件支持
- 通过服务发现或静态配置发现目标
- 多种图形模式及仪表盘支持(grafana)
Prometheus组成及架构:
- Prometheus Server:收集指标和存储时间序列数据,并提供查询接口
- ClientLibrary:客户端库
- Push Gateway:短期存储指标数据。主要用于临时性的任务
- Exporters:采集已有的第三方服务监控指标并暴露metrics
- Alertmanager:告警
- Web UI:简单的Web控制台
部署:
1 | # cd prometheus-k8s |
访问Prometheus UI:http://NdeIP:30090
部署 Custom Metrics Adapter
但是prometheus采集到的metrics并不能直接给k8s用,因为两者数据格式不兼容,还需要另外一个组件(k8s-prometheus-adpater),将prometheus的metrics 数据格式转换成k8s API接口能识别的格式,转换以后,因为是自定义API,所以还需要用Kubernetes aggregator在主APIServer中注册,以便直接通过/apis/来访问。
该 PrometheusAdapter 有一个稳定的Helm Charts,我们直接使用。
先准备下helm环境:
1 | wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz |
部署prometheus-adapter,指定prometheus地址:
1 | # helm install prometheus-adapter stable/prometheus-adapter --namespace kube-system --set prometheus.url=http://prometheus.kube-system,prometheus.port=9090 |
1 | # kubectl get pods -n kube-system |
验证,确保适配器注册到APIServer:
1 | # kubectl get apiservices |grep custom |
基于QPS指标实践
部署一个应用:
1 | apiVersion: apps/v1 |
该metrics-app暴露了一个Prometheus指标接口,可以通过访问service看到:
1 | # curl 10.1.181.193/metrics |
创建HPA策略:
1 | # vi app-hpa-v2.yml |
这里使用Prometheus提供的指标测试来测试自定义指标(QPS)的自动缩放。
配置适配器收集特定的指标
创建好HPA还没结束,因为适配器还不知道你要什么指标(http_requests_per_second),HPA也就获取不到Pod提供指标。
ConfigMap在default名称空间中编辑prometheus-adapter ,并seriesQuery在该rules: 部分的顶部添加一个新的:
1 | # kubectl edit cm prometheus-adapter -n kube-system |
该规则将http_requests在2分钟的间隔内收集该服务的所有Pod的平均速率。
测试API:
1 | kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests_per_second" |
压测:
1 | ab -n 100000 -c 100 http://10.1.181.193/metrics |
查看HPA状态:
1 | kubectl get hpa |
小结
- 通过/metrics收集每个Pod的http_request_total指标;
- prometheus将收集到的信息汇总;
- APIServer定时从Prometheus查询,获取request_per_second的数据;
- HPA定期向APIServer查询以判断是否符合配置的autoscaler规则;
- 如果符合autoscaler规则,则修改Deployment的ReplicaSet副本数量进行伸缩。